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SUMMARY

It is increasingly appreciated that oncogenic trans-
formation alters cellular metabolism to facilitate cell
proliferation, but less is known about the metabolic
changes that promote cancer cell aggressiveness.
Here, we analyzedmetabolic gene expression in can-
cer cell lines and found that a set of high-grade carci-
noma lines expressing mesenchymal markers share
a unique 44 gene signature, designated the ‘‘mesen-
chymal metabolic signature’’ (MMS). A FACS-based
shRNA screen identified several MMS genes as
essential for the epithelial-mesenchymal transition
(EMT), but not for cell proliferation. Dihydropyrimi-
dine dehydrogenase (DPYD), a pyrimidine-degrading
enzyme, was highly expressed upon EMT induction
and was necessary for cells to acquire mesenchymal
characteristics in vitro and for tumorigenic cells to
extravasate into the mouse lung. This role of DPYD
was mediated through its catalytic activity and enzy-
matic products, the dihydropyrimidines. Thus, we
identify metabolic processes essential for the EMT,
a program associated with the acquisition of meta-
static and aggressive cancer cell traits.

INTRODUCTION

Alterations in cellular metabolism are now recognized as an

emerging hallmark of cancer (Hanahan and Weinberg, 2011).

Almost a century ago, Otto Warburg observed that, under aero-

bic conditions, tumor cells display increased glucose uptake

and glycolytic rates compared to resting cells (reviewed in Hsu

and Sabatini, 2008; Ward and Thompson, 2012). Subsequently,
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many studies have revealed how this and other metabolic

changes allow cancer cells to accumulate building blocks for

the biosynthesis of macromolecules, while simultaneously main-

taining energetic and redox balance (reviewed in Cantor and

Sabatini, 2012). Whereas many of these mechanisms are shared

with normal rapidly proliferating cells, in recent years cancer

genomic data have revealed metabolic alterations that appear

to occur only in specific tumor types. These changes include

the loss of succinate dehydrogenase (SDH) or fumarate hydra-

tase (FH) in certain renal cell carcinomas and other familial

cancer syndromes (reviewed in Gottlieb and Tomlinson, 2005),

mutation of isocitrate dehydrogenase (IDH) 1 or 2 in glioma,

acute myeloid leukemias, chondrosarcomas (Dang et al., 2009;

Schulze and Harris, 2012), and amplification of phospho-

glycerate dehydrogenase (PHGDH) in estrogen receptor (ER)-

negative breast cancer and melanoma (Locasale et al., 2011;

Possemato et al., 2011). These examples suggest that, in addi-

tion to fueling increased proliferation, cancer-associated alter-

ations in metabolism can also satisfy tumor-specific demands.

Relatively few studies have examined the metabolic underpin-

nings of the cellular programs that increase cancer cell aggres-

siveness (Nomura et al., 2010; Ulanovskaya et al., 2013; Zhang

et al., 2012). One such program is the epithelial-mesenchymal

transition (EMT) (reviewed in Nieto andCano, 2012) that operates

in carcinoma cells and is thought to confer stem-like properties,

such as enhanced survival, self-renewal, and anchorage-inde-

pendent growth, all of which contribute to increased aggressive-

ness in vivo (Scheel and Weinberg, 2011). Indeed, EMT markers

are predictive for increased invasion, loss of differentiated

characteristics, metastasis, and poor prognosis in a number of

human tumor types (Nieto and Cano, 2012).

To understand how cellular metabolism contributes to these

and other proliferation-independent features of cancer, we

created a framework for the systematic identification of meta-

bolic alterations specific to particular tumor types, as well as
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those that may characterize high-grade malignancies. By

analyzing metabolic gene expression patterns in a large number

of cancer cell lines, we identified a metabolic gene signature that

is present in high-grade tumors bearing mesenchymal markers.

Among the enzymes encoded by these genes is dihydropyrimi-

dine dehydrogenase (DPYD), which catalyzes the rate-limiting

step in pyrimidine degradation and whose physiological role in

cancer was previously unknown. We find that EMT-promoting

transcription factors induce the expression of DPYD and that

its products, the dihydropyrimidines, must accumulate for cells

to undergo an EMT. These findings reveal that the EMT induces

a particular metabolic state and suggest that DPYD may have

value as a diagnostic marker or therapeutic target in high-grade

carcinomas.

RESULTS

A Mesenchymal-like Metabolic Gene Expression
Signature in High-Grade Carcinoma Cells
In order to study metabolic gene expression patterns in cancer,

we used publicly available data to generate a database of mRNA

expression profiles for 1,704metabolic genes in 978 human can-

cer cell lines (see the Experimental Procedures) (Possemato

et al., 2011). Aided by unsupervised hierarchical clustering, we

organized the profiles into five distinct groups (Figure 1A; Table

S1 available online); for four of these groups, the basis for clus-

tering was readily apparent (Figure 1B). One group consisted

of melanoma cell lines, which uniquely express skin pigment

biosynthesis genes. The cell lines in a second group were

derived from hematopoietic system cancers (e.g., leukemia, lym-

phoma, and multiple myeloma) and in a third, from neuroendo-

crine or neuroectodermal cancers (e.g., small cell lung cancer,

medulloblastoma, and neuroblastoma; Onganer et al., 2005;

Parham, 2001). A fourth group consistedmostly of epithelial can-

cer cell lines, in which cell lines originating from breast, liver,

colon, kidney, etc., clustered together. These results indicate

that patterns of metabolic gene expression are sufficient to orga-

nize most cancer cell lines by tissue of origin, suggesting that

many cancers retain significant portions of the metabolic pro-

grams of their normal tissue counterparts.

The cell lines in the fifth group proved more difficult to classify

and thus were initially named the ‘‘mixed-lineage group’’ (Fig-

ure S1A). While this group contained almost all the cell lines

derived from mesenchymal tumors (soft-tissue sarcoma, osteo-

sarcoma; 20% of the cell lines in this group) and glioblastomas,

it also included a large number of carcinoma lines (e.g., non-

small-cell lung, hepatocellular, and breast; 43% of the cell lines

in this group). Notably, all the breast cancer lines in the mixed-

lineage group were of the Basal B subtype, which are derived

from high-grade carcinomas (Carey et al., 2010) (Figure 1C).

Likewise, all the hepatocellular carcinoma (HCC) cell lines in

this group were also derived from high-grade tumors (Park

et al., 1995) and retained fewer of the metabolic gene expres-

sion features of normal liver than did the HCC lines that were

in the epithelial group (Figure S1B). Such loss-of-epithelial and

gain-of-mesenchymal characteristics have been associated

with high-grade malignancy in a variety of carcinoma types

(Brabletz, 2012). Moreover, several of the glioblastoma and
the majority of Basal B breast cancer cell lines are known to

bear mesenchymal characteristics (Kao et al., 2009; Verhaak

et al., 2010). Thus, we thought it likely that the cell lines in

the mixed-lineage group shared a common mesenchymal-like

phenotype.

Indeed, gene set enrichment analysis (GSEA) (Subramanian

et al., 2005) of the entire genome (�17,000 genes) showed that

expression of the mesenchymal gene set (EMT_UP) was signifi-

cantly elevated in the mixed-lineage group relative to the other

groups (FDR q-value < 0.0001; Figure S1C). Furthermore, the

mixed-lineage group had elevated expression of key mesen-

chymal markers (Mani et al., 2008), including vimentin (VIM),

Snail family zinc finger 1 and 2 (SNAI1/2), N-cadherin (CDH2),

Twist basic helix-loop-helix transcription factor 1 (TWIST1),

and the zinc-finger E-box binding homeobox 1 (ZEB1) transcrip-

tion factor (Figure 1D). Lastly, the epithelial markers claudin 1

(CLDN1) and E-cadherin (CDH1) were expressed at low levels

in this group (Figure 1D). Collectively, these data suggest that

the cell lines in the mixed-lineage group, regardless of tissue of

origin, display a mesenchymal-like gene expression profile.

Accordingly, hereafter, we refer to the mixed-lineage group as

the mesenchymal group of cell lines.

Identification of a Mesenchymal Metabolic Gene
Expression Signature
We identified a mesenchymal metabolic signature (MMS),

composed of 44 metabolic genes associated with diverse

metabolic pathways, as highly and differentially expressed in

the mesenchymal group of cell lines relative to the other groups

(see the Experimental Procedures) (Table 1; Figure 2A). The

MMS is particularly enriched for glycan biosynthesis genes

(36% of the genes in the set), including glutamine-fructose-6-

phosphate aminotransferase 2 (GFPT2) and UDP-N-acetylglu-

cosamine pyrophosphorylase 1 (UAP1), which encode the

rate-limiting and endpoint enzymes of the hexosamine biosyn-

thetic pathway (HBP), respectively (Elbein et al., 2004; Zhang

et al., 2004). The HBP end product, UDP N-acetylglucosamine

(UDP-GlcNAc), is used by the enzyme O-GlcNac transferase

(OGT) as a donor substrate to modify proteins via covalent

attachment of GlcNAc to serine and/or threonine residues

(Ma and Vosseller, 2013). Of special interest, this modification

plays an important role in mesenchymal cells by stabilizing the

EMT-inducing transcription factor SNAI1, which in turn downre-

gulates the key epithelial marker CDH1 (Park et al., 2010). The

MMS list includes other geneswith known connections to cancer

aggressiveness, such as ecto-50-nucleotidase (NT5E, also

known as CD73), a mesenchymal stem cell marker (Stagg

et al., 2010), ectonucleotide pyrophosphatase/phosphodies-

terase 2 (ENPP2, autotaxin), which promotes cell migration

and metastasis (Benesch et al., 2014), and monoacylglycerol

lipase (MGLL), which enhances cancer cell aggressiveness

through the production of signaling lipids (Nomura et al., 2010).

These examples suggest that the remaining MMS genes may

also play an important role in the mesenchymal phenotype

and/or aggressiveness of certain cancer cells.

We found that the MMS genes were significantly upregulated

in cell lines that express known mesenchymal markers (Fig-

ure 2B, left). For example, this gene set is upregulated in cell
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Table 1. The Mesenchymal Metabolic Signature Genes,

Classified by Metabolic Pathway

Metabolic

Pathways Metabolic Enzymes

Nucleotide pyrimidine

degradation

DPYDa,b

Other AK5,a ENPP1,a NT5Ea

Lipid triacylglycerol

degradation

MGLLa

cholesterol TM7SF2, AKR1B1a

sphingosine SPHK1,a UGCGa

signaling ENPP2,a PPAP2B,a PPAPDC1A,a

PDE1C,a PLCB4,a PTGR1,a

PIK3C2B, PLCG2, ALDH1A1,

PIP5K1B

Amino

Acid

branched amino

acid degradation

BCAT1a

amino acid

degradation

CYP1B1a

tetrahydrobiopterin

biosynthesis

GCH1

Carbon TCA cycle CYBRD1,a COX7A1,a CYBA

Redox glutathione MGST1,a GPX8,a GPX2

Glycan beta-galactose ST6GAL1, GLB1L2

dermatan sulfate DSE,a DSELa

heparin sulfate HS3ST3A1,a EXT1a

sulfatases ARSJ,a SULF1,a PAPSS2a

GlcNAc GFPT2,a,b GALNT10,a UAP1a

glycan GXYLT2,a GBE1,a GLT8D2,a

GALNT3

hyaluronan HAS2a

glycoprotein PAM,a CHI3L1a

other B3GNT9,a MFNG, HPDL

Cofactor nicotinamide AOX1,a NNMT,a QPRT

Other MICAL2,a MME,a DDAH1,a

MSRB3,a CA12,a PTER, CA2

TCA, tricarboxylic acid; GlcNAc, N-acetylglucosamine.
aThese genes are upregulated in mesenchymal cells.
bThese genes are rate-limiting enzymes.
lines derived from Basal B breast cancer and high-grade HCC

relative to their luminal and low-grade counterparts, respectively

(Figure 2C). Quantitative reverse-transcriptase PCR (qRT-PCR)

and immunoblotting confirmed the overexpression of several in-

dividual MMS genes, including nicotinamide N-methyltransfer-

ase (NNMT) and DPYD, in high-grade breast cancer and HCC
Figure 1. Based on Metabolic Gene Expression Patterns, High-Grade

(A)Metabolic gene expression patterns are sufficient to cluster most, but not all, ca

the expression levels of 1,704 metabolic genes in 978 different cell lines is prese

(B) Cell lines derived from related cancer types cocluster based on metabolic gen

from the indicated cancer type. Within each row, each black line represents the

(C) Most high-grade hepatocellular carcinoma (HCC) and Basal B breast cancer

(D) Known mesenchymal markers are highly expressed in the mesenchymal gro

See also Figure S1 and Table S1.
cell lines (Figures 2D and 2E), which also expressed mesen-

chymal markers, such as ZEB1 and TWIST1, and low levels of

CDH1 (Figure S2B).

Next, we asked if MMS gene expression correlates with that of

known mesenchymal markers in primary human tumors and

in cancer cell lines. From a database of expression profiles for

1,460 human primary tumors, including many of mesenchymal

origin, we identified tumors with high expression of known

mesenchymal markers (see the Experimental Procedures) (Fig-

ure S2A). In such tumors, the MMS genes were significantly

more highly expressed than in tumors not expressing these

markers (Figures 2B and S2A). Thus, MMS gene expression

correlates with that of knownmesenchymal markers in both can-

cer cell lines and tumors, suggesting that a particular metabolic

program characterizes the mesenchymal cell state.

EMT-Dependent Induction of Mesenchymal Metabolic
Signature Genes
Given the high expression of MMS genes in mesenchymal-like

relative to epithelial cancer cell lines, we hypothesized that the

EMT program may directly affect the expression of these genes.

To investigate this possibility, we examined engineered human

mammary epithelial (HMLE) cells that undergo an EMT upon

the activation of Twist (HMLE-Twist-ER) following treatment

with hydroxytamoxifen (OHT) (Mani et al., 2008). Over a 15-day

treatment with OHT, the HMLE-Twist-ER cells shifted their cell-

surface markers from an epithelial (CD24high, CD44low) to a

mesenchymal (CD24low, CD44high) profile (Al-Hajj et al., 2003;

Figure S2C), induced ZEB1 and TWIST1 expression, and sup-

pressed CDH1 (Figures 2F and 2G). Like the mesenchymal

markers, MMS genes, such as DPYD and NNMT, also displayed

a progressive increase in mRNA and protein levels over the

course of OHT treatment (Figures 2F and 2G).Moreover, NAMEC

cells, an HMLE-derived cell line that spontaneously acquired the

mesenchymal state (Tam et al., 2013) (Figure S2D), also ex-

pressed high levels of several MMS genes (Figure 2F). Lastly, re-

analysis of a previous expression profiling study comparing

HMLE cells expressing an empty vector or Twist (Taube et al.,

2010) showed that, unlike the majority of metabolic genes,

MMS genes were upregulated upon EMT induction in culture

(Figure 2H). Collectively, these results suggest that the EMT

program and MMS gene induction are coupled processes.

A Fluorescence-Activated Cell Sorting-Based Pooled
Small Hairpin RNA Screen for MMS Genes Required for
the EMT
To identify which, if any, of the MMS genes play a critical role in

the EMT, we developed a fluorescence-activated cell sorting

(FACS)-based RNAi screen using a pool of 514 lentivirus
Carcinoma Cell Lines Cocluster with Mesenchymal Cells

ncer cell lines based on their tissue of origin. Two-way hierarchical clustering of

nted as a heatmap.

e expression patterns. Each row shows all the cell lines in the data set derived

position of a cell line in the cluster.

cell lines cluster within the mesenchymal group.

up. Cancer cell lines were ordered as in (A).
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Figure 2. High Expression of MMS Genes in Mesenchymal Cell Lines

(A) Identification of theMMS. For eachmetabolic gene, the ratio between themean expression level in the mesenchymal group of cell lines and in all other groups

(see Figure 1) was determined and used to rank the genes. Genes that are upregulated (purple, 44 genes) or downregulated (blue, 16 genes) by at least 2-fold in

mesenchymal relative to nonmesenchymal cells are highlighted.

(B) Elevated MMS gene expression in mesenchymal cancer cell lines and primary tumors. Cancer cell lines and primary tumors were divided into mesenchymal

and nonmesenchymal groups based on the expression of known mesenchymal markers (Figures 1D and S2A). For each metabolic gene, the ratio of the mean

expression level among the groupswas determined. The box plots represent the log2 ratio distribution of MMSgenes (purple) and all othermetabolic genes (gray).

(C) MMS gene expression is elevated in Basal B breast and high-grade HCC cancer cell lines. Box plots represent the expression levels of the MMS genes in the

indicated breast cancer (green, luminal; red, Basal B) and HCC (blue, low-grade; brown, high-grade) subtypes.

(D) Individual validation of MMSmRNA levels in breast cancer (green, luminal; red, Basal B) and HCC (blue, low-grade; brown, high-grade) cell lines by qRT-PCR.

Each value represents the mean ± SEM for n = 3.

(E) Individual validation of MMS protein levels in the indicated breast cancer and HCC cell lines by immunoblotting.

(F) MMS protein upregulation an HMLE-Twist-ER-inducible EMT system. HMLE-Twist-ER cells were treated with hydroxytamoxifen (OHT) to induce an EMT for

15 days. Every 3 days, cellular proteins were isolated and subjected to immunoblotting using the indicated antibodies. NAMEC cells are mesenchymal cells

derived from HMLE cells (see the Experimental Procedures).

(legend continued on next page)
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vector-expressed small hairpin RNAs (shRNAs) targeting 42 of

the MMS genes, 12 known mesenchymal genes, as well as non-

expressed control genes (GFP, RFP, Luciferase, and LacZ) and

16 non-MMS metabolic genes (Figure S3A). We then induced

the EMT in HMLE-Twist-ER cells expressing the shRNA hairpin

library, and after 15 days, we compared the abundance of each

hairpin in FACS-sorted epithelial versus mesenchymal cell pop-

ulations isolated using the CD44 and CD24-surface antigens

(Figure 3A). We reasoned that knockdown (KD) of an EMT-

essential gene would cause cells to remain in the epithelial state

(CD24high/CD44low) even upon OHT treatment. Indeed, hairpins

targeting the EMT-promoting transcription factors ZEB1 and

SNAI1 were enriched in the epithelial population (Figure 3B).

We also found that hairpins against 16 MMS genes were simi-

larly enriched, suggesting that knockdown of these genes

blocks activation of the EMT program (Figure 3C). Among the

MMS genes, DPYD was a top hit, with 5 out of 12 hairpins

scoring in the screen (Figure 3B). DPYD is the rate-limiting

enzyme of the pyrimidine degradation pathway (Amstutz et al.,

2011) and is also capable of degrading the chemotherapeutic

agent 5-fluorouracil (5-FU), but the physiological role of this

enzyme in cancer cells is unclear (Offer et al., 2013).

We wished to rule out the possibility that knockdown of DPYD

and the other MMS hit genes may block the EMT by affecting

the proliferation or viability of epithelial cells. Thus, in a parallel

experiment, we determined the abundance of each hairpin in

HMLE-Twist-ER cells before and after a 15-day period of prolif-

eration in the absence of EMT induction (Figure 3A; uninduced

day 0 and day 15). As expected, the control hairpins as a group

had a neutral effect on proliferation (median log2 hairpin abun-

dance ratio = �0.28). Importantly, the abundance distributions

of the ZEB1,SNAI1, andDPYD hairpins did not differ significantly

from the control group (Figure 3D), indicating that these hairpins

did not affect cellular viability or proliferation; by contrast,

hairpins targeting ribonucleotide reductase M1 (RRM1) and thy-

midylate synthetase (TYMS), which are critical for cell division

(Tennant et al., 2010), caused a significant antiproliferative effect

(median log2 hairpin abundance ratio =�3.23 and�2.4, respec-

tively) (Figure 3D). Therefore, knockdown of DPYD suppressed

the EMT program without inhibiting the viability or proliferation

of epithelial cells, suggesting that this enzyme plays a specific

role in inducing the mesenchymal cell state.

To validate the identification of DPYD as essential for the

EMT,we individually infectedHMLE-Twist-ER cultureswith eight

distinct shRNAs targeting DPYD. We found that DPYD knock-

down, in a dose-dependent manner, decreased the percentage

of cells with a mesenchymal-like profile (CD24low/CD44high) after

15 days of Twist induction by OHT treatment (Figure S3C). DPYD

knockdown with the hairpins that most strongly reduced DPYD

expression (shDPYD_1 and shDPYD_4) (Figures S3D and S3G)
(G) MMS gene upregulation in HMLE-Twist-ER-inducible EMT system. Every 3 d

the indicated probes. Each value represents the mean ± SEM for n = 3.

(H)MMSgenes are upregulated during the EMT.Microarray analysis for gene expr

2010). Here, the same data set was reanalyzed for the log2 expression ratio of

express Twist and Snai1 (mesenchymal) to HMLE-Twist-ER expressing empty vec

MMS genes (purple) and all other metabolic genes (gray). The p value for the co

See also Table S2.
did not affect the viability of untreated HMLE-Twist-ER cells

(Figure S3E) but decreased the percentage of OHT-treated cells

with a mesenchymal-like profile (Figure S3F). In order to further

demonstrate the reliability of the screen, we validated another

hit from the screen, glutathione peroxidase 8 (GPX8) (Figure 3C).

As for DPYD, GPX8 hairpins demonstrated a similar expression-

phenotype relationship (Figure S3H), thus confirming that several

MMS genes are essential for the EMT program.

DPYD Expression Promotes the EMT
Next, we further characterized the role of DPYD in the EMT

program. In addition to inhibiting the EMT-associated changes

in cell-surface marker expression (CD24high/CD44low to

CD24low/CD44high) (Figure 4A), DPYD knockdown suppressed

the Twist-induced expression of known mesenchymal markers,

as judged by qRT-PCR (Figure 4B), immunoblotting (Figure 4C),

and immunofluorescence (Figure 4E). Moreover, DPYD knock-

down suppressed EMT-induced changes in cell morphology

(Figures 4D and 4E).

To rule out the possibility that the effects of the DPYD

shRNAs are due to off-target effects, we restored DPYD levels

in shDPYD-expressing HMLE-Twist-ER cells by ectopically ex-

pressing the mouse isoform of DPYD (mDpyd), which is 86%

identical at the amino acid level to the human isoform (Fig-

ure S4A) but is unaffected by the shRNAs targeting the human

DPYD mRNA (Figure S4B). Importantly, mDpyd rescued the ef-

fect of shDPYD on the expression of cell-surface markers (Fig-

ure 4A) and known EMT genes (Figures 4B, 4C, and 4E) as well

as changes in cell morphology (Figures 4D and 4E). DPYD

knockdown had a similar effect onmesenchymal marker expres-

sion in PANC1 pancreatic cancer cells engineered to express

Twist-ER (Figure S4C), showing that the role of DPYD in EMT

induction is not restricted to breast tissue-derived cell lines.

As an in vitro functional readout of the EMT, we measured

the capacity of HMLE-Twist-ER cells to form mammospheres,

migrate, and invade, which are unique properties of the mesen-

chymal-like (CD24low/CD44high), but not of epithelial (CD24high/

CD44low) cells (Mani et al., 2008). DPYD knockdown decreased

the efficiency of mammosphere formation (Figures 4F and

S4D), as well as the capacity of the cells to migrate (Figures 4G

and S4E) and invade matrigel basement membrane (Figure 4H).

Therefore, blockade of EMT induction by DPYD suppression

affects multiple in vitro phenotypes of mesenchymal cells.

We then turned our attention to the role of DPYD expression in

the EMT program during the progression of human cancer cells

through specific aspects of the metastatic cascade in mice.

Extravasation is a key step in metastasis, permitting cancer cells

to migrate out of capillaries into target tissues (Nieto and Cano,

2012), and recent studies demonstrate that Twist-induced EMT

promotes tumor cell extravasation (Tsai et al., 2012). To test
ays, cells were collected and mRNA isolated and subjected to qRT-PCR using

ession changes during EMTwas described previously (GSE24202; Taube et al.,

MMS and all other metabolic genes between HMLE-Twist-ER cells forced to

tor (epithelial). The box plots represent the log2 ratio expression distributions of

mparison between the two groups was determined using the Student’s t test.
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Figure 3. A FACS-Based Pooled shRNA Screen Identifies DPYD as Required for EMT

(A) Schematic presentation of the FACS-based pooled shRNA screen. OHT, hydroxytamoxifen; gDNA, genomic DNA.

(B) DPYD knockdown (KD) inhibits the EMT. All hairpins from the screen were ranked based on the log2 ratio of their abundance in themesenchymal relative to the

epithelial population of OHT-induced HMLE-Twist-ER cells after FACS sorting (see Figure 3A). Hairpin subpools pictured include those targeting control genes

(39 hairpins targeting RFP, GFP, luciferase, and LacZ), ZEB1 (nine hairpins), SNAI1 (eight hairpins), and DPYD (12 hairpins). One SD below the mean of the

distribution of the control hairpins was set as a cutoff (red line). Every hairpin with a log2 ratio below the cutoff was considered a hit. The significance of the

differences in distribution between the selected genes and the other genes in the screen was quantified using the Student’s t test.

(C) Several of theMMSgenes are critical for the EMT.Geneswith at least two hairpins scoring below the cutoff (see B) were classified as hit genes. The numbers in

the table represent the hit genes as a fraction of the total genes in a given subpool.

(D) DPYDKDdoes not affect cell viability. All hairpins were ranked based on the log2 ratio of their abundance in uninduced HMLE-Twist-ER cells on day 15 relative

to day 0. The same hairpin subpools as in (B), with the addition of shRNAs targeting the essential genes RRM1 (four hairpins) and TYMS (five hairpins), are shown.

The significance of the differences in distribution between the selected genes and the control genes was quantified using Student’s t test.

See also Figure S3 and Tables S3 and S4.
whether DPYD plays a role in the ability of cells to extravasate,

we used HMLE-Twist-ER transformed with an H-RasG12V onco-

gene expression vector that also expressedGFP (HMLER-Twist-

ER cells). These cells were then infected with hairpins against

DPYD, together with a vector control or mDpyd, induced by

OHT to undergo EMT in vitro, and injected into the mouse tail
1100 Cell 158, 1094–1109, August 28, 2014 ª2014 Elsevier Inc.
vein. As measured by GFP staining, DPYD depletion reduced

the ability of HMLER-Twist-ER cells to enter the mouse lung by

�95% (Figures 4I and 4J), a process that was significantly

rescued by the expression of mDpyd (Figures 4I and 4J). Thus,

DPYD plays an essential role during the lung extravasation of

cancer cells that are undergoing the EMT.



DPYD Activity Is Essential for Its Function in the EMT
We asked whether the role of DPYD in the EMT requires its

enzymatic activity. Accordingly, we tested the ability of a cata-

lytically attenuated mouse DPYD mutant (mDpyd-I560S, also

known as DPYD*13, which has a 75% reduction in enzymatic

activity relative to wild-type [WT]; Offer et al., 2013), to rescue

the inhibitory effect of shDPYD_1 on EMT induction. Whereas

expression of wild-type mDpyd in the presence of shDPYD_1

restored the EMT induction following 15 days of OHT treat-

ment, mDpyd-I560S had a greatly reduced capacity to rescue

CD44/CD24 expression and mammosphere formation and

completely failed to restore expression of the EMT-inducing

transcription factor ZEB1 (Figured 5A–5C). In addition, whereas

control cells (expressing empty vector) treated with OHT for

only 10 days displayed an intermediate CD44/CD24 marker

expression profile, cell lines ectopically expressing either

mouse or human DPYD (DPYD-FLAG) displayed higher mesen-

chymal marker expression at this earlier time point (Figure 5D),

resembling the profile of control cells after a full 15 days of OHT

treatment (Figure 5A). Compared to wild-type DPYD, expres-

sion of the mutant DPYD-I560S (human DPYD-I560S-FLAG)

had a greatly attenuated effect on cell-surface marker expres-

sion, mammosphere formation, and ZEB1 expression (Figures

5D–5F). Thus, the pro-EMT role of DPYD requires DPYD

residues needed for its full enzymatic activity. Moreover, the

accelerated progression of the EMT in DPYD-overexpressing

cells suggests that the DPYD products may be rate-limiting

in EMT.

Cellular Dihydropyrimidine Levels Are Elevated during
the EMT
Having demonstrated that DPYD enzymatic activity plays a crit-

ical role in the EMT program, we asked whether its metabolic

products increase in abundance during this process. To do

so, we used liquid chromatography-tandem mass spectrometry

(LC-MS/MS) (Büchel et al., 2013) to determine the cellular con-

centration of DPYD substrates (uracil and thymine) and immedi-

ate products (dihydrouracil [DHU] and dihydrothymine [DHT])

(Figure 5G) (Lohkamp et al., 2010). In HMLE-Twist-ER

cells, overexpression or knockdown of DPYD resulted in a

corresponding �10-fold increase or decrease, respectively, in

the intracellular DHU/uracil molar ratio (Figure 5H). Moreover,

NAMEC cells exhibited higher DHU/uracil and DHT/thymine ra-

tios than HMLE-Twist-ER cells (by 10- and 6-fold, respectively;

Figures 5H and S5A), consistent with the higher endogenous

DPYD expression level in the former cells (Figure 2F). In addi-

tion, OHT treatment of HMLE-Twist-ER cells, which progres-

sively upregulates DPYD expression (Figures 2F and 2G),

gradually increased the cellular DHU/uracil molar ratio by

5-fold after 15 days of Twist induction (Figure 5I). DPYD expres-

sion and DHU/uracil ratios were also correlated in breast cancer

and HCC cell lines (Figures 5J and 5K). Notably, the higher

DHU/uracil molar ratio in MCF7 breast cancer cells compared

to the other luminal breast cancer cell lines (Figure 5J) corre-

lated with the relatively high expression of DPYD in this partic-

ular cell line (Figure 2D). Hence, DHU/uracil and DHT/ ratios

correlate closely with DPYD expression levels and mesen-

chymal character in a number of cellular settings, suggesting
that DPYD is enzymatically active in the cancer cell lines that

we examined.

DPYD is normally expressed in the liver, where it is the rate-

limiting enzyme of a three-step pyrimidine degradation pathway

that converts uracil and thymine to b-alanine and 2-methyl-

b-alanine, respectively (Figure 5G) (Lohkamp et al., 2010). In

the liver, the immediate products of DPYD are further catabo-

lized by dihydropyrimidinase (DPYS) and beta-ureidopropionase

(UPB1) (van Kuilenburg et al., 2004) (Figure 5G). In contrast, we

found that HMLE-Twist-ER and NAMEC cells express only

DPYD, but not the other components of this catabolic pathway

(Figure S5B). In addition, unlike that of DPYD, DPYS and UPB1

expression was not elevated in breast Basal B and high-grade

HCC cell lines (Figure S5C). These observations explain why

the products of DPYD activity can accumulate in mesen-

chymal-like cancer cells but may not do so in normal liver.

Intracellular Dihydropyrimidines Are Essential for
the EMT
To establish the requirement for the immediate products of

DPYD in the EMT program, we ectopically expressed DPYS-

FLAG, which to our knowledge is the only known enzyme that

uses dihydropyrimidines (DHPs) as substrates (van Kuilenburg

et al., 2010). We found DPYS-FLAG to be an active enzyme,

as it reduced the intracellular concentration of its substrates

(DHPs; Figure 6A), while elevating the intracellular abundance

of its immediate product, 3-ureidopropionate (Figure S6A). After

15 days of Twist induction by OHT treatment, DPYS-FLAG

expression decreased the percentage of cells with a mesen-

chymal profile (CD24low/CD44high) (Figure 6B) and inhibited

the upregulation of mesenchymal markers (Figure 6C) and the

ability of the cells to migrate (Figure 6D) and form mammo-

spheres (Figure 6E). These results provide further evidence

that the accumulation of DHPs plays a key role in the EMT

program.

Next, we asked whether addition of DHU or DHT to culture

media could substitute for DPYD loss. Indeed, treatment of

shDPYD_1 cells with these metabolites at 10 or 100 mM resulted

in a dose-dependent rescue of mammosphere formation (Fig-

ure 6F), whereas the DPYD substrate uracil had a significantly

smaller effect (Figure S6B), despite the fact that uracil and

DHU accumulated to comparable intracellular concentrations

(Figure S6C). Therefore, the effect of DPYD knockdown onmam-

mosphere formation can be reversed either by ectopic expres-

sion of active DPYD (Figures 4C and 5C) or by supplementation

of the cell-culture media with its products. Together, these re-

sults confirm that the MMS gene product DPYD plays a critical

role in the EMT via its capacity to generate dihydropyrimidines.

DISCUSSION

We identified a mesenchymal metabolic signature (MMS) con-

sisting of 44 metabolic genes upregulated in cancers bearing

mesenchymal markers. Several of these metabolic genes are

essential for the EMT, including DPYD, the rate-limiting enzyme

of the pyrimidine degradation pathway. Remarkably, the expres-

sion of DPYD is not required for cell viability or proliferation,

demonstrating the existence of metabolic processes that
Cell 158, 1094–1109, August 28, 2014 ª2014 Elsevier Inc. 1101
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specifically enable carcinoma cells to acquire mesenchymal-like

characteristics. Because these characteristics are associated

with increased cancer aggressiveness, these findings suggest

that DPYD activity may play a role in carcinoma progression.

There is a clear difference between the metabolic pathways

that are associated with proliferation and those upregulated

during the EMT. Compared to resting cells, proliferating cells up-

regulate glycolysis and nucleotide biosynthesis pathways (Hu

et al., 2013), whereas the mesenchymal metabolic signature

(MMS) is enriched in glycan biosynthesis genes. Glycosylation

is thought to be one of the most common covalent protein mod-

ifications in eukaryotic cells, with a major role in differentiation

and mediating cell-cell interactions (Li et al., 2013). Because

the EMT is accompanied by major changes in cell morphology

and detachment from the surrounding cells, it is reasonable to

assume that a major glycan remodeling may occur during the

EMT program. Furthermore, glycosylation regulates the function

of several key players in the EMT, including the products of

the SNAI1 and CD44 genes (Jaggupilli and Elkord, 2012; Park

et al., 2010). Thus, we anticipate that future studies will further

demonstrate an important role for specific glycan remodeling

events in both the mesenchymal phenotype and the EMT

program.

After executing the EMT program, epithelial-derived cancer

cells acquire traits associated with high-grade malignancy,

including resistance to apoptosis and chemotherapy, dedif-

ferentiation, and invasiveness, which can lead to metastatic

dissemination from primary tumors (Tam and Weinberg, 2013).

Thus, inhibiting the EMT may maintain a tumor in a lower-grade

state, potentially increasing therapeutic efficacy and slowing

metastasis. The feasibility of manipulating epithelial plasticity is

reinforced by studies showing that depletion of ZEB1 by RNA

interference in mesenchymal-like cells results in a partial mesen-

chymal-epithelial transition (MET), presumably through the in-

duction of CDH1 expression (Chaffer et al., 2013). However,
Figure 4. DPYD Expression Is Essential for EMT Induction
(A) Mouse Dpyd expression rescues the effects of DPYD KD on the EMT. HMLE-Tw

for the cell-surface markers CD24 and CD44. The percentage of cells in each ga

(B)MouseDpyd rescues the effects of DPYDKD onmesenchymal gene expressio

levels of the indicated genes were measured using qRT-PCR. Each value repres

(C) Mouse Dpyd rescues the effects of DPYD KD on ZEB1 expression. HMLE-Twis

with the indicated antibodies.

(D) Mouse Dpyd rescues the effects of DPYD KD on cell morphology. HMLE-Tw

microscopy. EV, empty vector.

(E) Mouse Dpyd rescues the effects of DPYD KD on cell morphology and gene

indicated proteins were visualized by immunofluorescence.

(F) Mouse Dpyd rescues the effects of DPYD KD on mammosphere formation. Q

data are reported as the number of mammospheres formed per 500 seeded cell

(G) Mouse Dpyd rescues the effects of DPYD KD on cell migration. HMLE-Tw

was measured. The data are reported as the number of migrated cells per 50,0

vector.

(H) Mouse Dpyd rescues the effects of DPYD KD on cell invasiveness. HMLE-Twis

Matrigel was measured. The data are reported as in (G).

(I) DPYD KD inhibits lung extravasation of cancer cells in vivo. HMLER-Twist-ER

with OHT for 15 days and then injected into the mouse tail vein. After 3 days, the

chemistry. Each value (d) represents the average of three nonadjacent lung sect

(J) DPYD KD inhibits lung extravasation of cancer cells in vivo. Representative GF

The bottom panels show magnifications of the boxed areas in the upper panels.

See also Figure S4.
the development of inhibitors targeting transcription factors,

such as ZEB1, remains a challenge (Singh and Settleman,

2010). By contrast, many of the enzymes encoded by the MMS

have well-defined active sites that can potentially be targeted

by small molecules. Here, we demonstrate that DPYD expres-

sion and activity are essential for the induction of ZEB1 expres-

sion, suggesting that the expression of transcriptional drivers

of the EMT program can be modulated through inhibition of

metabolic enzymes, such as DPYD.

Many studies have linked DPYD function with acquired tumor

resistance to the chemotherapeutic agent 5-FU, but the physio-

logic role of this enzyme in cancer cells is unknown (Amstutz

et al., 2011). By demonstrating that DPYD plays an essential

role in the EMT, we provide one of the first indications for its func-

tion in cancer. However, there is a clear distinction between this

function and the normal role of DPYD in the liver. In the latter,

DPYD functions as the first enzyme in a three-step pathway

of pyrimidine degradation, whereas we show that in mesen-

chymal-like cells, the expression of the two downstream en-

zymes (DPYS and UPB1) is not detectable at the mRNA level.

Therefore, the EMT program reconfigures the pyrimidine degra-

dation pathway in order to use only DPYD, presumably because

its enzymatic activity fulfills a specific metabolic demand. We

suggest that this EMT-dependent metabolic rewiring, which ac-

tivates only selected components of a given metabolic pathway,

is not exclusive to DPYD but can potentially occur in other MMS-

related metabolic processes. Thus, through such rewiring, the

EMT may confer novel cellular functions to other pathways rep-

resented in the MMS as well. Further studies aimed at under-

standing the role of the MMS genes in cancer may reveal novel

metabolic processes that promote cancer aggressiveness.

The function of DPYD in the EMT is dependent upon its prod-

ucts, the dihydropyrimidines (DHPs), DHU and DHT. However,

understanding the role of these metabolites in the EMT program

is challenging, because no biological function has been ascribed
ist-ER cells were infected and treated as indicated, followed by FACS analysis

te is presented (mean ± SD, for n = 3).

n. HMLE-Twist-ER cells were infected and treated as indicated. The expression

ents the mean ± SEM for n = 3.

t-ER cells were infected and treated as indicated. Followed by immunoblotting

ist-ER cells were infected and treated as in (B) and visualized with bright-field

expression. HMLE-Twist-ER cells were infected and treated as in (B), and the

uantification of in vitro mammosphere formation by cells treated as in (C). The

s; each value represents the mean ± SD for n = 6.

ist-ER cells were infected and treated as in (B), and their ability to migrate

00 seeded cells; each value represents the mean ± SD for n = 3. EV, empty

t-ER cells were infected and treated as in (B) and their ability tomigrate through

cells expressing the indicated hairpins, and open reading frames were treated

number of GFP-positive cells in each lung was determined by immunohisto-

ions from a single mouse (five mice per group).

P-positive cells from the same mouse lungs as in (I) are indicated with arrows.
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Figure 5. DPYD Activity Is Essential for the EMT

(A) Mouse Dpyd-I560S fails to rescue the effects of DPYD KD on the EMT. HMLE-Twist-ER cells were infected and treated as indicated, followed by FACS

analysis as in Figure 4A.

(legend continued on next page)
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the DHPs other than as substrates for the enzyme DPYS. One

possibility is that DHPs may act as allosteric regulators of other

enzymes (similar to serine regulating the glycolytic enzyme

pyruvate kinase M2 [Chaneton et al., 2012]) or as receptor

ligands (like the citric acid cycle intermediates succinate and

a-ketoglutarate acting as ligands to the G-protein-coupled

receptors GPR99 and GPR91, respectively (He et al., 2004). In

this scenario, the DHPs themselves could act as key signaling

molecules without further enzymatic processing.

Another potential function for the DHPs is that these pyrimi-

dine bases could be converted to pyrimidine deoxynucleosides

or nucleosides and thus could be possibly incorporated into

DNA or RNA, respectively. Support for this latter possibility

comes from previous studies showing that genotoxic agents

can damage DNA precursors (dNTPs) in the nucleotide pools

of bacterial cells (Dolinnaya et al., 2013). These chemically

altered dNTPs, including the deoxynucleotide triphosphate

form of DHT (DHdTTP), have been found to be incorporated

into bacterial genomes (Dolinnaya et al., 2013) and are able

to substitute for deoxythymidine triphosphate (dTTP) as sub-

strates for the Escherichia coli DNA polymerase I and Klenow

fragments in vitro (Ide and Wallace, 1988; Ide et al., 1987).

It remains to be determined whether such modified nucleotides

can be produced in human cells and if so how they affect

cellular phenotypes.
EXPERIMENTAL PROCEDURES

For further details, please refer to the Extended Experimental Procedures.
Identification of the MMS Genes

For each metabolic gene, the ratio between the mean expression level in

mesenchymal (mesenchymal group; Figure 1) and nonmesenchymal cell lines

(all other groups) was determined. The mean and SD of all the metabolic gene

expression ratios was calculated, and all genes upregulated above a 2-fold or

below a �2 were classified as MMS (Table S2).
(B) Mouse Dpyd-I560S fails to rescue the effects of DPYD KD on ZEB1 express

immunoblotting with the indicated antibodies.

(C) The I560S mutation prevents the capacity of mDpyd to promote mammosph

in vitro mammosphere formation assay as in Figure 4F. Each value represents th

(D) DPYD activity accelerates the EMT. HMLE-Twist-ER cells infected with the in

followed by FACS analysis as in Figure 4A. The percentage of cells in each gate

(E) Unlike wild-type human DPYD, overexpression of the catalytically attenuated

after 10 days of OHT treatment. Cells infected with the indicated constructs were e

with the indicated antibodies.

(F) DPYD activity enhances mammosphere formation. Cells treated as in (D) were

value represents the mean ± SD for n = 6.

(G) Schematic presentation of the pyrimidine degradation pathway. Gene names a

DPYS, dihydropyrimidinase; UPB1, beta-ureidopropionase.

(H) Modulation of DPYD expression affects the cellular DHU/uracil molar ratio. DH

cell lines expressing empty vector, DPYD-FLAG, or shDPYD_1 hairpin. Each val

(I) The cellular DHU/uracil ratio increases during EMT. HMLE-Twist-ER cells we

collected and subjected to LC-MS/MS analysis to determine DHU and uracil level

presented. Each value represents the mean ± SD for n = 3.

(J) The cellular DHU/uracil ratio is elevated in Basal B relative to luminal breast c

indicated breast cancer cell lines (green, luminal; red, Basal B) using LC-MS/MS

(K) The cellular DHU/uracil ratio is elevated in high-grade relative to low-grade HC

lines (blue, low-grade; brown, high-grade). Each value represents the mean ± SD

See also Figure S5.
Pooled shRNA Screen

pLKO.1 lentiviral plasmids encoding shRNAs targeting 74 genes (listed in

Table S3) were obtained and combined to generate a plasmid pool (Posse-

mato et al., 2011). HMLE cells were infected with the pooled lentivirus at an

MOI of 0.2–0.5 so as to ensure that most cells contained only one viral inte-

grant. Cells were selected for 3 days with 0.5 mg/ml puromycin, after which

time 106 cells were removed, washed, and frozen at �80�C (Figure 3A, day

0). The remaining cells were split into OHT-treated and untreated samples.

After 15 days, the OHT-treated cells were trypsinized, washed with

PBS +1% inactivated fetal calf (IFC) serum, and FACS-sorted using

CD44/CD24 antibodies in order to separate the mesenchymal and epithelial

populations.

Genomic DNA was isolated from all the cells using the QIAampDNA Mini Kit

(QIAGEN). To amplify the shRNAs encoded in the genomic DNA, PCR was

performed for 33 cycles at an annealing temperature of 66�C using 3.5 mg

of genomic DNA, the primer pair indicated below, and DNA polymerase

(TAKARA Ex taq, Clontech lab, RR001A). Forward primers containing unique

4 nt barcodes were used (see below) so that PCR products obtained from

many samples could be sequenced together. After purification, the PCR

products from each cell sample were quantified by ethidium bromide staining

(Sigma-Aldrich, E1510) after gel electrophoresis, pooled in equal proportions,

and analyzed by high-throughput sequencing (Illumina). The shRNAs from

all four DNA samples (day 0, day 15 untreated, day 15 OHT-treated mesen-

chymal, and day 15 OHT-treated epithelial) were sequenced together.

Sequencing reads were deconvoluted using GNU Octave software by segre-

gating the sequencing data by barcode and matching the shRNA stem

sequences to those expected to be present in the shRNA pool, allowing for

mismatches of up to 3 nt. The log2 values reported are the average log2 of

the fold change in the abundance of each shRNA in the mesenchymal-like

samples compared to epithelial cells. The mean and SD of the control

hairpins (GFP, RFP, Luciferase, and LacZ) were calculated and used to set

a cutoff (one SD below the control mean). Every gene that had at least two

hairpins with a log2 value below the cutoff was considered a hit (hairpin ratio

list is in Table S4).

Metabolite Extraction

Solvents were obtained from Fisher Scientific and were Optima LC-MS/MS

grade, except where otherwise specified. Cells grown in standard tissue

culture plates (�500,000 cells per sample) were washed twice in an ice-cold

solution of 0.9% NaCl in deionized water, followed by extraction on dry ice

in 1 ml 80% methanol containing 10 ng/ml phenylalanine-d8 and valine-d8
ion. HMLE-Twist-ER cells were infected and treated as indicated, followed by

ere formation in DPYD KD cells. Cells treated as in (B) were subjected to the

e mean ± SD for n = 6.

dicated constructs were either left untreated or treated with OHT for 10 days,

is presented.

DPYD (DPYD-I560S) does not potentiate the Twist-induced ZEB1 upregulation

ither left untreated or treated with OHT for 10 days, followed by immunoblotting

subjected to the in vitro mammosphere formation assay as in Figure 4F. Each

remarked in red: DPYD, dihydropyrimidine dehydrogenase (rate-limiting step);

U and uracil levels weremeasured by LC-MS/MS in NAMEC or HMLE-Twist-ER

ue represents the mean ± SD for n = 3.

re treated with OHT for 15 days. At the indicated time points, samples were

s. The molar concentration ratio between the two metabolites in each sample is

ancer cell lines. The concentrations of DHU and uracil were measured in the

. Each value represents the mean ± SD for n = 3.

C cell lines. The concentrations of DHU and uracil were measured in HCC cell

for n = 3.
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(Sigma-Aldrich, 492485 and 486612, respectively) as internal standards. The

cell mixtures were shaken vigorously on a Vortex mixer for 10 min at 4�C, vac-
uum dried, and resuspended in 100 ml LC-MS/MS-grade water (Fisher). These

extracts were then centrifuged at 15,0003 g at 4�C for 10 min, and the super-

natants were passed through a cellulose acetate particulate filter (National

Scientific).

Migration and Invasion Assays

For the migration assay, 50,000 cells were seeded into 24-well cell culture

inserts with 8 mm pores (BD falcon, 353097). For invasion assay 50,000 cells

were seeded on BD Matrigel invasion chambers with 8 mm pores (Corning,

62405-744). For both assays, after 20 hr, the cells on the upper surface

of the filters were removed using cotton swabs. For visualization, the cells

were fixed with 4% PFA in PBS, followed by methanol treatment and crystal

violet. Three fields per filter were counted. Data are presented as migrated

cells per filter.

Animal Studies, Histology, and Immunohistochemistry

For extravasation studies, HMLE-Twist-ER were transformed with a GFP-

tagged-H-RasG12V oncogene (MSCV-RAS-IRES-GFP, HMLER) and sorted

for GFP-expressing cells. HMLER cells were then infected with OHT-inducible

Twist (HMLER-Twist-ER) and the indicated hairpins and vectors. After 15 days

of OHT treatment (in culture), 1,000,000 cells per mouse were injected through

the tail vein (fivemice per sample). After 3 days, the lungs were extracted, fixed

in 10% formalin, paraffin embedded, and sectioned. The sections were sub-

jected to deparaffinization and antigen retrieval with 10 mM sodium citrate

buffer (pH 6.0) in a pressurized decloaking chamber (Biocare Medical). Anti-

bodies were diluted in 5% horse serum and 0.1% Tween in TBS, which was

also used for blocking. The Vectastain ABC Immunoperoxidase Detection

Kit (Vector Labs, PK6101) and DAB+ Substrate Kit (Dako, K3467) were used

for chromogenic labeling. Images were acquired using an Olympus BX41 mi-

croscope and CellSensR software. For all image-based data, acquisition and

processing steps were carried out using the same parameters across the

entire set. For all image-based data, acquisition and processing steps were

carried out using the same parameters across the entire set. For each mouse,

three nonadjacent lung sections were stained and examined to obtain the total

number of GFP-positive cells. All research involving animals was complied

with protocols approved by the MIT Committee on Animal Care.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, six

figures, and five tables and can be found with this article online at http://dx.

doi.org/10.1016/j.cell.2014.07.032.
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Figure 6. DPYS Expression Inhibits the EMT Program

(A) DPYS-FLAG expression reduces the cellular DHT/thymine ratio. HMLE-Twis

measure the intracellular DHT and thymine concentration. Each value represents

(B) DPYS-FLAG expression inhibits the EMT program. HMLE-Twist-ER cells wer

markers CD24 and CD44. The percentage of cells in each gate is presented.

(C) DPYS-FLAG expression reduces the expression level of mesenchymal genes. H

expression levels were measured using qRT-PCR. Each value represents the me

(D) DPYS-FLAG expression inhibits cell migration. HMLE-Twist-ER cells were infe

are reported as in Figure 4G. Each value represents the mean ± SD for n = 3.

(E) DPYS-FLAG expression inhibits mammosphere formation. Quantification of in

are reported as in Figure 4F. Each value represents the mean ± SD for n = 6.

(F) DPYD products rescue the effect of DPYD KD on mammosphere formation.

concentrations of DHU or DHT and subjected to the in vitro mammosphere format

the mean ± SD for n = 6.

See also Figure S6.
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